Ethereum 2.0

Prysmatic Labs

Preston Van Loon

Prysmatic Labs

Implementing Ethereum Serenity with Proof of Stake + Sharding

What is Ethereum?

÷

......

÷

٠

٠

۰.

٠.

٠

٠.

_...

4

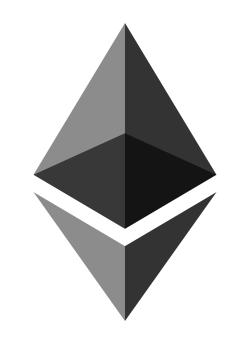
.....

÷

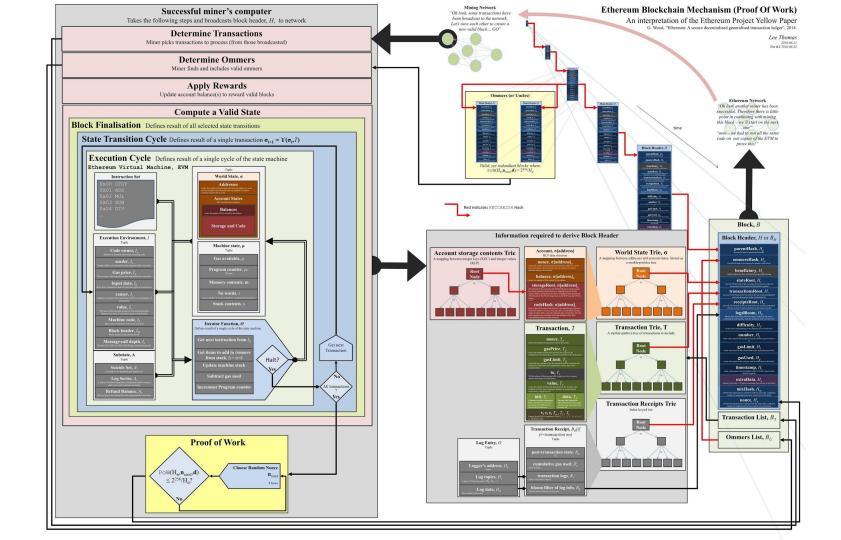
۰.

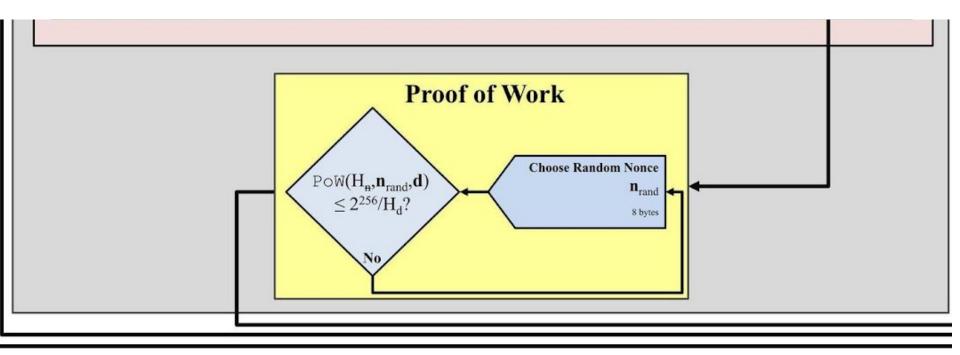
!

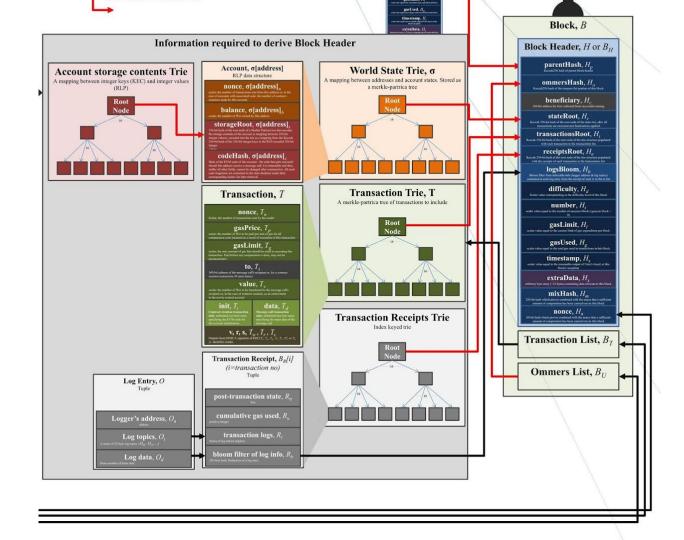
٥


٠

*


!


Ethereum - A Decentralized World Computer


- Open source blockchain
- Decentralized global virtual machine
- Consisting of tens of thousands of nodes
- Unlimited possibility of use cases
 - o DAOs
 - ERC Tokens
 - o DApps

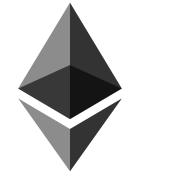
What Does It Mean To Scale Ethereum?

Today's Transaction Maximum Throughput

7 tx/s

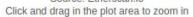
Average 3 tx/s

27 tx/s


24,000+ tx/s

Average 12 tx/s Average 1,667 tx/s

Today's Blocktimes

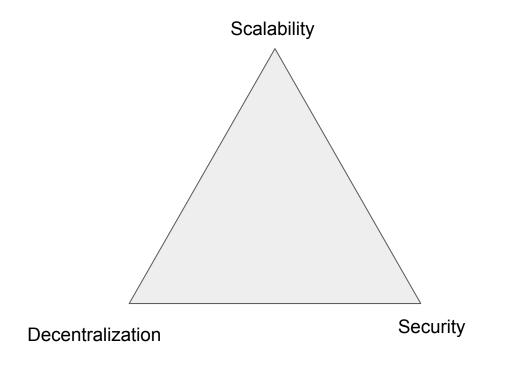

10 minutes 14 seconds

How Transactions Fit Into Blocks

- Blocks typically consist of the highest paying transactions that fit within a block gas limit
- Miners mine transactions and collect gas fees
- Miners vote on the gas limit
- Current default algorithm for gas limit calculation is at least 4.7M but targeting 150% of recent 1024 block exponential moving average. Changes are limited by a factor of 1/1024 in either direction.

	Block 5912518			
	1 - Transaction w/ 21000 gas			
	2 - Transaction w/ 21000 gas			
3	3 - Transaction w/ 153251 gas			
7	74 - Transaction w/ 46548 gas			
	Gas Used 7,987,062 Gas Limit 8,000,029			

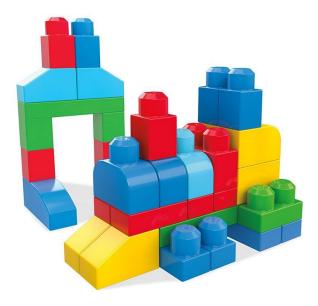
Ethereum Average GasLimit Chart Source: Etherscan.io



 \equiv

How Can We Scale?

Blockchain Trilemma

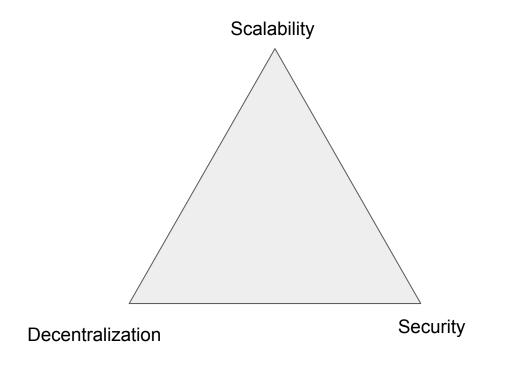


Idea: Increase the Block Gas Limit!

Issues to consider

- Bigger blocks means each block requires more computational power
- Full nodes require more resources to verify blocks
- Less decentralized

Idea: Reduce the Time Between Blocks!


Issues to consider

- Fast blocks means higher probability of forks
- More forks makes blockchains vulnerable to attacks
- Less secure

Blockchain Trilemma

Two Types of Scaling Solutions

Layer 1 - On chain


- Higher throughput on the protocol layer
- More difficult to implement
- Satisfies the trilemma
- Benefits layer 2

Layer 2 - Off chain

- Higher throughput enabled by less on-chain operations
- Easier to implement
- More flexible and customizable
- May not be as secure or decentralized as layer 1

Ethereum 2.0

What is Ethereum 2.0?

"A big, multi-year long, upgrade to massively increase the blockchain's scalability with sharding, increase security with proof of stake, and improve its programmability by changing a bunch of technical things we got wrong the first time."

- Vitalik Buterin, Creator of Ethereum

Phase 0 Beacon Chain

Validator Registry

- 1 way deposit via deposit contract
- 32 ETH minimum to join
- 18 ETH ejection balance
- Exits / Withdraws

Reward / Penalties

- Calculated every epoch
- Validator slashing
- Liveness penalty
- Participation reward

Shuffling / Randomness

- Calculated during epoch transition
- RANDAO model

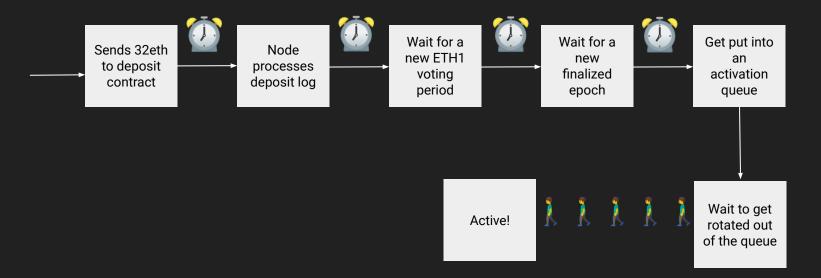
Beacon

Chain

- Randomly distributed validator pool
- Verifiable delay function (soon™)

Proof of Stake Finalization

- Block justification via Casper FFG
- Allows finalization of ETH 1.x



Casper - Friendly Finality Gadget

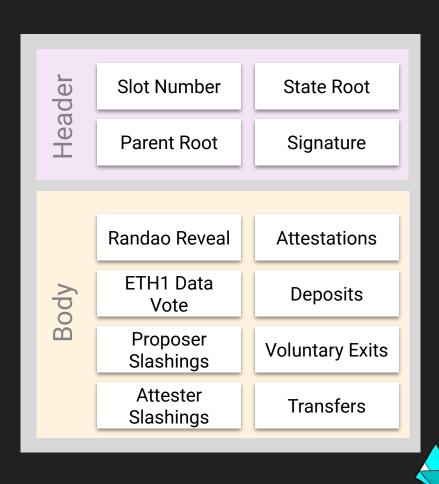
- Validators have ETH at stake
- Energy efficient consensus mechanism
- Finalized checkpoints
- Lower barrier to entry

Becoming a Validator

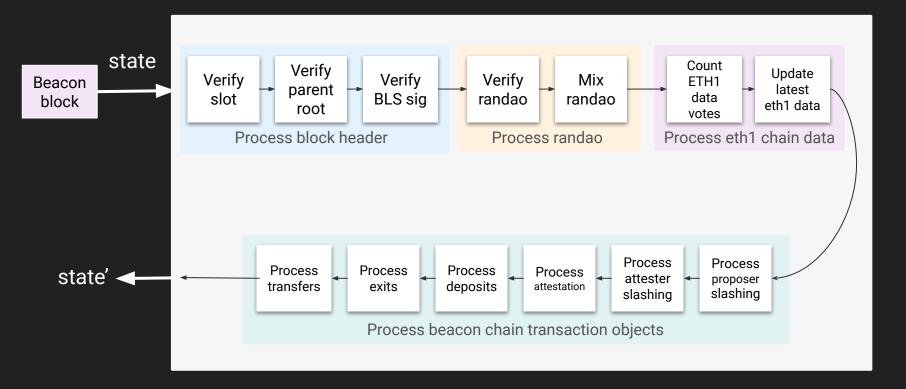
Minimum activation time ~2.134 hours

Validator Responsibilities

Proposer - A validator selected to create a beacon chain block


Attester - A validator that is part of the committee that creates attestation and creates crosslink to a recent shard block on a shard chain

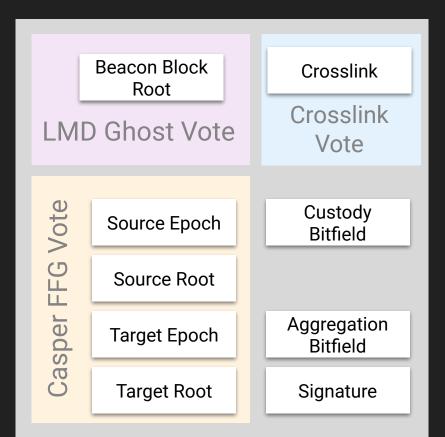
Committee - A randomly sampled subset of validators



Proposing a Beacon Block

- 1. Assemble the block body
- 2. Execute the state transition
- 3. Sign the block
- 4. Broadcast to network

Beacon Block Processing



Attesting

1. Determine Casper FFG,

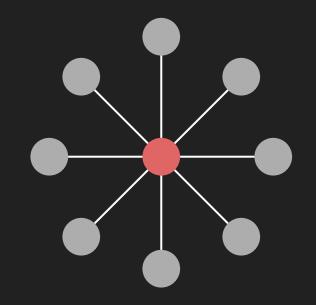
Crosslink, and LMD Ghost votes

- 2. Aggregate similar attestations
- 3. Sign the attestation
- 4. Broadcast to network

Validator Rewards and Penalties

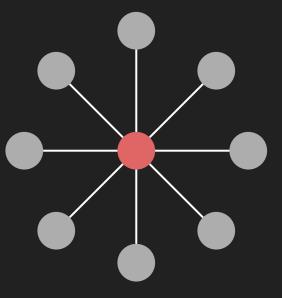
- Proposing a block yields higher reward than attestations
- Rewards and penalties are calculated every epoch
- Penalties increase exponentially when finality has not occured for more than four epochs

Total ETH validating	Max annual issuance	Max annual network issuance	Max annual return rate
1MM	181,019	0.17%	18.10%
3MM	313,534	0.30%	10.45%
10MM	572,433	0.54%	5.72%
30MM	991,483	0.94%	3.30%
100MM	1,810,193	1.71%	1.81%


2,097,152 ETH required to start ETH 2.0

Phase 1 Shard Chains

Shard Chains


- Introduces the parallel shard chains
- 64 shards, data only
- Shard chains are linked to the beacon chain by crosslinks once per epoch
- Expected to come to consensus on 10Mb/s of data

Use Cases

- ZK Rollup
- ZK Rollup Rollup
- Decentralized twitter
- GPG key server
- Website hosting
- Data layer for private/enterprise blockchains
- Generalized small / medium amounts of storage

Phase 1.5 Merging eth1 & eth2

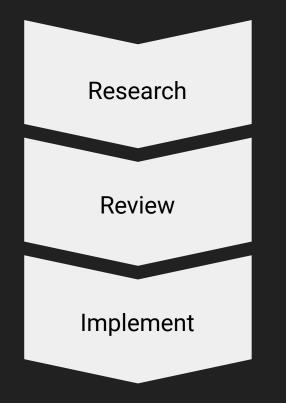
Phase 1.5

• Until phase 1.5, the Ethereum we use today on mainnet will continue as a

proof-of-work blockchain and transactions will continue to be processed by miners

- Starting in phase 1.5, eth1 will officially become a shard and transition to proof-of-stake
- For end users and dapps, this change should be **seamless**

Phase 2 State Execution


State Execution

- Replace EVM with eWASM
- Asynchronous cross shard transactions
- Contract yanking (migrating shards)
- Ethereum 2.0 becomes useful to average contract developer / users
- In research and design phase, development likely to start early 2020
- Development can start in parallel to phase 0 and phase 1

Building Ethereum 2.0

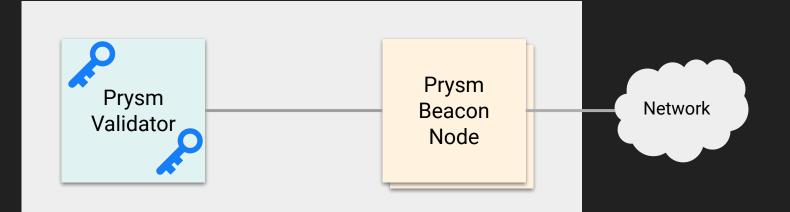
From Research to Implementation

- Explore new ideas
- Collaborate on ethrear.ch, in person, online channels
- Propose changes to the Ethereum 2.0 specification
- The spec changes are reviewed by other researchers and implementation teams
- Spec release targets are tagged

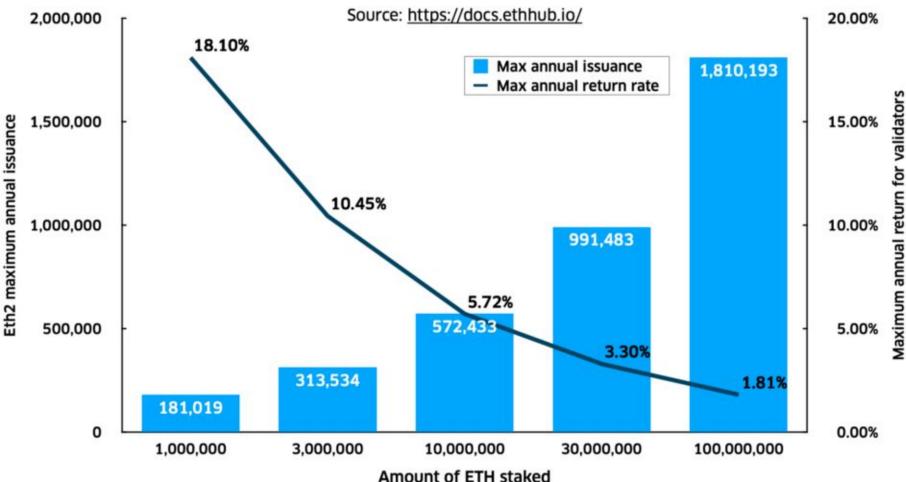
- Implementation teams design new features
- Features are proposed in github and reviewed within the team

Prysm Feature Lifecycle

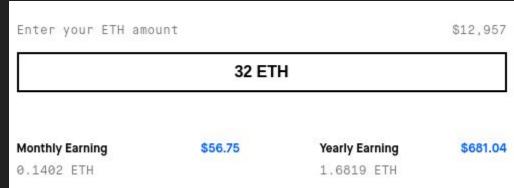
- Design document
- Tracking issues
- Implementation
- Pull request review
- Canary analysis / testing
- Release


```
3*attestedBalance >= 2*totalBalance {
                                state.CurrentCrosslinks[shard] = crosslink
       return state, nil
  ProcessRewardsAndPenalties processes the rewards and penalties of individual validator.
  Spec pseudocode definition:
   def process rewards and penalties(state: BeaconState) -> None:
func ProcessRewardsAndPenalties(state *pb.BeaconState) (*pb.BeaconState, error) {
        // Can't process rewards and penalties in genesis epoch.
        if helpers.CurrentEpoch(state) == 0 {
                return state, nil
       attsRewards, attsPenalties, err := attestationDelta(state)
        if err != nil {
               return nil, errors.Wrap(err, "could not get attestation delta")
       clRewards, clPenalties, err := crosslinkDelta(state)
        if err != nil {
               return nil, errors.Wrapf(err, "could not get crosslink delta")
        for i := 0; i < len(state.Validators); i++ {</pre>
               state = helpers.IncreaseBalance(state, uint64(i), attsRewards[i]+clRewards[i])
               state = helpers.DecreaseBalance(state, uint64(i), attsPenalties[i]+clPenalties
        return state, nil
// ProcessRegistryUpdates rotates validators in and out of active pool.
// Spec pseudocode definition:
              validator.effective balance >= MAX EFFECTIVE BALANCE
```


Running Validators


This is NOT investment advice!

Prysm Client Design



ETH 2.0 Issuance and Rewards

Validator profits/yield

- Costs are low and do not scale linearly with the number of validators in operator
- Long term commitment: cannot unlock funds until phase 2
- Liveness penalties can cost up to half of validator balance (16 ETH)
- Rewards are higher for early adopters

• Staking is not without **risk!**

Based on 10MM at stake and ETH price at \$405

Become a validator and help secure eth2.

Earn continuous rewards for providing a public good to the community.

GET STARTED

- https://medalla.launchpad.ethereum.org/
- https://prylabs.net

Recap

- Ethereum 2.0 introduces proof of stake and blockchain sharding
- Ethereum 2.0 is a new blockchain; not a hard fork
- Ethereum 2.0 is a phased rollout, expected to complete in 2021
- Ethereum 2.0 phase 0 is available to test today, launching this Q4 2020

Prysmatic Labs

@prylabs